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Abstract: We study the full bosonic spectrum around giant and dual giant graviton

probes in exactly marginally deformed backgrounds. Considering supersymmetric and non-

supersymmetric three-parameter deformations of AdS5×S5, we perform a detailed analysis

of small fluctuations for both the expanded D3-brane configurations. In particular, we en-

hance the scalar spectra of frequencies found in our previous paper hep-th/0609173 with

the important contributions brought by the gauge field fluctuations. The giant graviton

case exhibits a non-trivial coupling between scalar and vector modes driven by the de-

formation, whose resolution yields to a universal correction of the undeformed spectrum.

On the other hand, dual giant vibrations turn out to be completely decoupled. From our

results one can also easily read the gauge field fluctuations in the undeformed (dual) giant

graviton scenario.
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1. Introduction

This is a natural sequel of our previous work [1] in which we have studied giant and dual

giant graviton configurations in the marginally deformed backgrounds proposed by Lunin-

Maldacena (LM) and Frolov in [2, 3].

Giant gravitons were first introduced in [4] where expanded brane configurations in

the AdS5 × S5 background with exactly the same quantum numbers of a point particle

were found. In particular, they were described as stable D3-branes sitting at the center of

AdS5, wrapping an S3 in the S5 part of the geometry and traveling around an equator of

the internal space. In [5, 6] it was shown that also stable D3-branes blown up into AdS

exist, the so-called dual giant gravitons. The main feature of both the configurations is

to saturate a supersymmetric BPS bound for their energy, which turns out to be equal to

their angular momentum in units of the radius of the background.

In [1], the possible formation of (dual) giant gravitons was analyzed in the non-

supersymmetric three-parameter γi-deformation of the AdS5×S5 background [3]. A trivial

translation of the results to the superconformal Lunin-Maldacena deformation [2] was ob-

tained by simply setting γi = γ. We found stable states for extended D3-brane solutions

grown into the deformed five-sphere S̃5 and also inside the AdS5 spacetime. The striking

outcome was an identical scenario to the undeformed one: The dynamical branes were

completely blind to the deformation. In particular, the supersymmetric γi = γ case was

not special as long as the procedure was totally independent of the specific value of the

deformation parameters. We have also examined the scalar spectrum of small fluctuations

around the ground state solutions, in order to study their stability. The main results of [1]

were that the deformed frequencies turned out to depend on the radius of the (dual) gi-

ant and the deformation entered into the spectrum bringing positive contributions. The
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conclusion was that the (dual) giant gravitons were perturbatively stable states. All the

calculations were worked out with a priori vanishing gauge field fluctuations on the world-

volume of the branes. Is this a coherent procedure to have full control of the vibration

spectrum?

Driven by recent results, the answer is now non-trivial. In fact, in [7] the embedding

of D7-branes was studied in LM-Frolov backgrounds with the aim of finding the mesonic

spectrum of the dual Yang-Mills theory with flavors, according to the gauge/gravity cor-

respondence. In particular, we have considered a spacetime-filling D7-brane wrapped on a

deformed three-sphere in the internal coordinates. We have found that for both the super-

symmetric and the non-supersymmetric deformations a static configuration existed which

was completely independent of the specific values of the deformation parameters γi. More-

over, by studying the fluctuations of the D7-brane, we have observed that the background

deformation induces a non-trivial coupling between scalar and vector modes, crucial in

the exact determination of the meson mass spectrum. With a field redefinition, we have

simplified the equations of motion for the bosonic modes and solved them analytically.

With this in mind, we now try to understand if the U(1) worldvolume gauge fields play

a similar role also for D3-brane giant and dual giant configurations. Since the stable giant

gravitons expanding in the deformed part of the geometry [1] wrap the same cycle inside

the internal space as the D7-brane does [7], their bosonic fluctuations should encode the

same features. On the other hand, we expect that nothing changes for dual giants and the

scalar-vector coupling is absent because their worldvolume lies in AdS.

In this respect, we first consider the equations of motion for the complete tower of

bosonic Kaluza-Klein modes arising from the compactification of a D3-brane giant on a

deformed three-sphere. As anticipated, we find a coupling between scalars and vectors

which can be handled with a field redefinition similar to the one so useful in [7]. Having

performed this simplification, we obtain a universal and nice dependence on the deforma-

tion parameters in all the bosonic fluctuations, previously missed in [1]. More precisely, all

the undeformed frequencies are shifted by the same deformation-dependent quantity and

the parameters γ2,3, associated to TsT transformations along the tori with a direction or-

thogonal to the probe brane, always appear in the complete spectrum. Exactly as in [7] the

parameter γ1 related to the deformation along the torus inside the D-brane worldvolume

never enters the equations of motion for quadratic fluctuations and does not affect the spec-

trum. The corresponding states are classified according to their SO(4) (the isomorphisms

of the three-sphere) and U(1)×U(1) quantum numbers (ℓ;m2,m3) and the universal shift

depends on the deformation parameters through the linear combination (γ2m3 − γ3m2)
2.

There exists a smooth limit to the undeformed case by sending γi → 0 and this also gives

us the behavior of the gauge field fluctuations of giant gravitons not included in the scalar

analysis of [8]. The effect of the deformation is to break SO(4) down to U(1) × U(1) and

a Zeeman-like effect occurs. A suitable shift in ℓ gives 8(ℓ + 2)2 undeformed degenerate

degrees of freedom but, because of the γi-degeneracy breaking, they split among different

frequency values. Closely following what has been done in [7], we find that the splitting

is different according to the choice γ2 6= γ3 or γ2 = γ3 (which comprises the N = 1

supersymmetric deformation).
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The dual giant graviton story is instead the same as in [1]. We find no coupling

between scalar and vector modes since the brane now expands in AdS. Moreover, the

gauge fluctuations turn out to be completely independent of the deformation parameters

so that also the undeformed case can be directly read from our computation.

The plan of the paper is as follows. After an introductory section on three-parameter

deformations of the AdS5 × S5 and a review of the stable giant and dual giant graviton

configurations on these backgrounds found in [1], in section 3 we determine the exact and

full bosonic spectrum of small fluctuations around the equilibrium giant solutions. We also

discuss the properties of the spectrum and analyze in details the splitting of the frequency

levels and the corresponding degeneracy. Finally, in section 4 we consider the dual giant

graviton case, whereas our conclusions follow in section 5.

2. Marginally deformed backgrounds and (dual) giant gravitons

We start by giving the non-supersymmetric three-parameter deformation of the type IIB

AdS5 × S5 background. This is realized by three TsT transformations (T duality-angle

shift-T duality) along three tori inside S5 and driven by three different real parameters

γi [3]. Since the deformation is exactly marginal, the AdS factor remains unchanged. Let

us write the metric of the deformed five-sphere S̃5 (in string frame and setting for the

moment α′ = 1) using radial/toroidal coordinates (µi, φi), i = 1, 2, 3, with
∑

i µ2
i = 1:

ds2
S̃5

= R2

(

dr2

R2 − r2
+

r2

R2
dθ2 + G

3
∑

i=1

µ2
i dφ2

i

)

+ R2Gµ2
1µ

2
2µ

2
3

(

3
∑

i=1

γ̂idφi

)2

(2.1)

where r ∈ [0, R], θ ∈
[

0, π
2

]

and φi ∈ [0, 2π]. Recall that

G−1 = 1 + γ̂2
1µ2

2µ
2
3 + γ̂2

2µ2
1µ

2
3 + γ̂2

3µ2
1µ

2
2 γ̂i = R2γi (2.2)

In what follows it will be convenient to parametrize µi coordinates via

µ2
1 = 1 − r2

R2
µ2

2 =
r2

R2
cos2 θ µ2

3 =
r2

R2
sin2 θ (2.3)

Explicitly, the deformations involve the three tori (φ1, φ2), (φ1, φ3), (φ2, φ3) and are

parametrized by constants γ̂3, γ̂2 and γ̂1 respectively. In the case of real deformation

parameters, in which we work, the axion field C0 is vanishing while the non-constant dila-

ton is

e2φ = G (2.4)

with the undeformed one chosen to be zero. The background carries also a non-vanishing

NS-NS two-form B and R-R forms as well:

B = R2G
(

γ̂3µ
2
1µ

2
2dφ1 ∧ dφ2 + γ̂1µ

2
2µ

2
3dφ2 ∧ dφ3 + γ̂2µ

2
3µ

2
1dφ3 ∧ dφ1

)

C2 = − r4

R2
sin θ cos θdθ ∧

3
∑

i=1

γ̂idφi

C4 = ω4 + r4G sin θ cos θdθ ∧ dφ1 ∧ dφ2 ∧ dφ3 (2.5)
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where ω4 is the four-form on the AdS part of the geometry. It is important to note that

the combination

C4 − C2 ∧ B = ω4 + r4 sin θ cos θdθ ∧ dφ1 ∧ dφ2 ∧ dφ3 (2.6)

is exactly the R-R four-form of the undeformed AdS5 × S5 spacetime [1]. The supersym-

metric Lunin-Maldacena background [2] can be recovered by setting γ̂1 = γ̂2 = γ̂3.

We now follow [1] and review the introduction of stable D3-brane giant and dual giant

graviton configurations in these deformed backgrounds. The dynamics of bosonic degrees

of freedom of a D3-brane is described by the action

S = SDBI + SWZ = −T3

∫

Σ4

d4σ e−φ
√

−det(g + F) + T3

∫

Σ4

P

[

∑

n

Cn

]

eF (2.7)

with g denoting the pull-back of the ten-dimensional spacetime metric on the worldvolume

Σ4 of the brane parametrized by coordinates σa (in what follows we choose a static gauge

and latin labels a, b, . . . stand for worldvolume components). The gauge potential A enters

the action through the U(1) worldvolume gauge field strength F in the modified field

strength F = 2πα′F − b, where b is the pull-back to the worldvolume of the target NS-NS

two-form potential. T3 is the D3-brane tension and in the Wess-Zumino term P [. . .] denotes

again the pull-back.

The first expanded solution we analyze is a D3-brane blown up inside the deformed

five-sphere part of the geometry and sitting at the center of AdS5: The giant graviton.

In particular the brane wraps the (θ, φ2, φ3) directions, it has constant radius r = r0 and

orbits the S̃5 in the φ1 direction with a constant angular velocity ω0. Writing the AdS5

metric as

ds2
AdS5

= −
(

1 +
l2

R2

)

dt2 +
dl2

1 + l2

R2

+ l2
[

dα2
1 + sin2 α1

(

dα2
2 + sin2 α2dα2

3

)]

(2.8)

our configuration is given by

r = r0 φ1 = ω0t l = α1 = α2 = α3 = 0 F = 0 (2.9)

which, after integration on the spatial coordinates of the worldvolume in (2.7), leads to the

effective Lagrangian

L = −N
r3
0

R4

[
√

1 − (R2 − r2
0) φ̇1

2 − r0 φ̇1

]

(2.10)

and to the corresponding Hamiltonian

H = φ̇1J − L =
N

R4

√

r6
0 +

(R4J/N − r4
0)

2

R2 − r2
0

(2.11)

where J is the conserved conjugate momentum to φ1 (see [1] for more details). For fixed J ,

we have the interesting minimum of (2.11) at r0 = R
√

J
N

, where the energy is E = J
R

and
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ω0 = φ̇1 = 1
R

. We stress that this expanded D3-brane configuration has the same quantum

numbers as the point-like graviton even in the deformed AdS5× S̃5 background [1] and the

classical configuration is completely blind to the deformation parameters γ̂i.

On the other hand, there exists also the possibility of a dual giant graviton equilibrium

solution where the D3-brane is wrapped on the three-sphere (α1, α2, α3) contained in the

AdS5 part of the geometry. The brane now has constant radius l0 and again orbits rigidly

in the φ1 direction of the S̃5:

l = l0 φ1 = ω0t r = φ2 = φ3 = 0 θ =
π

4
F = 0 (2.12)

The effective Lagrangian and Hamiltonian for this configuration are

L = −N
l30
R4

[
√

1 +
l20
R2

− R2 φ̇1
2 − l0

R

]

H =
N

R4

[

√

(

1 +
l20
R2

) (

l60 + R6
J2

N2

)

− l40
R

]

(2.13)

again introducing the conjugate momentum J to φ1. The Hamiltonian H, as a function of

l0, has an expanded minimum located at l0 = R
√

J
N

; the ground state energy is E = J
R

and ω0 = φ̇1 = 1
R

, matching the results of the giant graviton case.

As extensively stressed in [1], this is the same situation known from the standard

undeformed AdS5×S5 background. In fact, even for the deformed AdS5×S̃5, there are three

potential configurations to describe a graviton carrying angular momentum J : The point-

like graviton, the giant graviton consisting of a D3-brane lying in the deformed five-sphere

and the dual giant graviton consisting of a spherical three-dimensional brane which expands

into the AdS space. The precise values of the deformation parameters γ̂i never enter the

calculation so the non-supersymmetric case behaves exactly as the supersymmetric γ̂i = γ̂

one.

These facts represent strong hints on the stability under the perturbation of the equi-

librium configurations found. In order to verify this expectation we have also studied

the spectrum of small scalar fluctuations around the (dual) giant graviton solutions. The

deformed frequencies turned out to depend on deformation parameters but their positive

contributions showed that the expanded gravitons were perturbatively stable states.

3. The complete bosonic spectrum around giant gravitons

Our main purpose is to investigate again oscillations of the D3-brane probes just described

in these deformed backgrounds with the aim of studying the complete bosonic spectrum.

So we reanalyze the set of small fluctuations about the expanded giant solutions together

with their worldvolume gauge field fluctuations turned on.

Generic vibrations of a brane around its ground state can be described by

X = X0 + εδX(σa) (3.1)

– 5 –
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and by a non-trivial flux εF = ε dA. With X we mean one of the spacetime coordinates, X0

denotes the solution of one of the unperturbed equilibrium configurations of the previous

section, the fluctuation δX(σa) is a function of the worldvolume coordinates σa and ε ≡
2πα′ is viewed as a small perturbation parameter.

The action (2.7) consists of the Dirac-Born-Infeld term

LDBI = −T3
1√
G

√

−det(g − b + εF ) (3.2)

where we have written the dilaton field as in (2.4), and of the Wess-Zumino one which

reads

LWZ = T3

{

P [C4 − C2 ∧ B] + εP [C2] ∧ F
}

(3.3)

We consider both of the terms expanded up to the quadratic order in ε, giving

S =

∫

Σ4

d4σ
[(

L(0)
DBI + L(0)

WZ

)

+ ε
(

L(1)
DBI + L(1)

WZ

)

+ ε2
(

L(2)
DBI + L(2)

WZ

)]

≡
∫

Σ4

d4σ
(

L(0) + εL(1) + ε2 L(2)
)

(3.4)

In this section we only focus on the giant graviton case. Instead of (2.8), to study the

fluctuation spectrum it is convenient to use the following parametrization of the AdS5 part

of the metric [8, 1]

ds2
AdS5

= −
(

1 +
4
∑

k=1

v2
k

)

dt2 + R2

(

δij +
vivj

1 +
∑4

k=1 v2
k

)

dvidvj (3.5)

and consider the modified ansatz

r = r0 + ε ρ(σa) φ1 = ω0t + εϕ(σa) vk = εχk(σa) F = dA (3.6)

with respect to the D3-brane configuration given in (2.9), which now reads

r = r0 ≡ R

√

J

N
φ1 = ω0t ≡

1

R
t vk = 0 F = 0 (3.7)

Recall that F is always dressed with ε, J is the fixed angular momentum and we have

σa = (t, θ, φ2, φ3). To ease the presentation of our results we introduce the undeformed

metric Gab with non-vanishing entries

Gtt = − 1

R2
Gij = g̃ij (3.8)

where g̃ij = diag(1, c2
θ , s

2
θ) is the diagonal metric on the unit three-sphere (θ, φ2, φ3) with

determinant g̃ = sin2 θ cos2 θ, and the fixed vector

qa = γ̂2δ
a
φ3

− γ̂3δ
a
φ2

(3.9)
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Obviously the L(0) term in (3.4) gives a zeroth order Lagrangian density related to (2.10),

while we can write the first as well the second order corrections in the following compact

forms

L(1) = T3r
2
0

√

g̃
[

R2∂tϕ + γ̂2Ftφ3
− γ̂3Ftφ2

]

L(2) = −T3r
2
0

√

g̃

[

R

2
Cab∂aχk∂bχk +

R

2(R2 − r2
0)

Cab∂aρ∂bρ +
R(R2 − r2

0)

2r2
0

Gab∂aϕ∂bϕ

+
1

4Rr2
0

FabF
ab +

(R2 − r2
0)

Rr2
0

qcFacGab∂bϕ − 2R2

r0

(

∂tϕ +
1

R2
qcFtc

)

ρ +
R

2
χ2

k

]

(3.10)

where

Cab ≡ Gab +
(R2 − r2

0)

R2
qaqb (3.11)

F ab ≡ CacCbdFcd and the sum over k is understood.

The first order Lagrangian L(1) is a total derivative since (3.7) is the right solution

which really minimizes the action [1] even with the inclusion of gauge fluctuations.

In writing L(2) some terms are integrated by parts and it is interesting to note that

only the deformation parameters γ̂2 and γ̂3, hidden in the vector (3.9), appear. In fact,

at this order the dependence on γ̂1, associated to the torus inside the D3 worldvolume,

completely cancels in a very similar fashion to [7]. Here, we have also used the Bianchi

identity ∂tFφ2φ3
+ ∂φ2

Fφ3t + ∂φ3
Ftφ2

= 0 which eliminates a γ̂1-dependent contribution.

We now determine the equations of motion coming from the quadratic Lagrangian L(2)

in (3.10). Avoiding the extremal cases r0 = 0 and r0 = R, for the χk, ρ and ϕ scalars we

find, respectively

∂a

(

√

g̃ Cab ∂bχk

)

−
√

g̃ χk = 0 (3.12)

∂a

(

√

g̃ Cab ∂bρ
)

+
2(R2 − r2

0)

Rr0

√

g̃
(

R2∂tϕ + qbFtb

)

= 0 (3.13)

∂a

[

√

g̃ Gab

(

∂bϕ +
1

R2
qcFbc

)]

− 2Rr0

(R2 − r2
0)

√

g̃ ∂tρ = 0 (3.14)

whereas, using (3.14) the equations of motion for the gauge fields take the form

∂a

(

√

g̃ GacGbd Fcd

)

− (R2 − r2
0)
√

g̃ qd∂d

[

Gbc

(

∂cϕ +
1

R2
qfFcf

)

− 2Rr0δ
b
t

(R2 − r2
0)

ρ

]

= 0

(3.15)

which come into two distinct classes, according to b = t or b = i ≡ {θ, φ2, φ3}.
The scalar fluctuations χk decouple from the rest. On the other hand, ρ and ϕ interact

non-trivially among each other as in the undeformed case but they also couple with the

worldvolume gauge fields through terms proportional to the deformation parameters. This

situation is intimately related to the resolution of the mesonic spectrum performed in [7]

which we closely follow from now on.
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Before solving the equations of motion (3.12)–(3.15) for scalar and vector modes, let

us write the abelian flux in terms of its potential one-form, Fab = ∂aAb − ∂bAa, and choose

the gauge At = 0. Moreover, in order to simplify the equations we introduce the special

operators

Oγ̂ ≡ −R2∂2
t + ∇i∇i +

(

1 − r2
0

R2

)

(γ̂2∂3 − γ̂3∂2)
2 O0 ≡ Oγ̂ |γ̂2=γ̂3=0 (3.16)

where we write ∂2 ≡ ∂φ2
and ∂3 ≡ ∂φ3

for concision. Of course, by ∇i we mean covariant

derivatives on the unit three-sphere.

Using the general identity 1√
g̃
∂i(

√
g̃∂is) = ∇i∇is valid for any scalar s, equation (3.12)

for the χk modes then takes the compact form

(Oγ̂ − 1) χk = 0 (3.17)

whereas defining

Φ ≡ ϕ +
1

R2
qaAa = ϕ +

1

R2
(γ̂2Aφ3

− γ̂3Aφ2
) (3.18)

equations (3.13) and (3.14) can be rewritten as

Oγ̂ ρ +
2R(R2 − r2

0)

r0
∂tΦ = 0 (3.19)

O0 Φ − 1

R2
(γ̂2∂3 − γ̂3∂2)∇iAi −

2Rr0

(R2 − r2
0)

∂tρ = 0 (3.20)

If b = t, equation (3.15) for the vector modes becomes

∂t

[

∇iAi + (R2 − r2
0)(γ̂2∂3 − γ̂3∂2)Φ

]

+
2r0

R
(γ̂2∂3 − γ̂3∂2) ρ = 0 (3.21)

with Φ defined in (3.18). On the other hand, if b runs on the coordinates that parametrize

the unit three-sphere, from (3.15) we obtain

Oγ̂ Aj −∇i∇jAi − (R2 − r2
0)(γ̂2∂3 − γ̂3∂2) ∂jΦ = 0 (3.22)

where we have used 1√
g̃
∂i(

√
g̃F ij) = ∇iF

ij = ∇i∇iAj −∇i∇jAi.

It is convenient to search for solutions expanded as plane-waves in t (with frequency

denoted by ω) and as spherical harmonics on S3. In particular, it is natural to expand χk,

ρ and Φ in scalar spherical harmonics and the gauge fields in vector ones (see for example

the approach in [9]).

The scalar spherical harmonics are a complete set of functions Ym2,m3

ℓ in the
(

ℓ
2 , ℓ

2

)

representation of SO(4) and with definite U(1)×U(1) quantum numbers (m2,m3) satisfying

|m2 ± m3| = ℓ − 2k, ℓ, k = 0, 1, . . . . For fixed ℓ the degeneracy is (ℓ + 1)2. Their defining

equations are

∇i∇i Ym2,m3

ℓ = −ℓ(ℓ + 2)Ym2,m3

ℓ

∂2,3 Ym2,m3

ℓ = im2,3 Ym2,m3

ℓ (3.23)
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The vector spherical harmonics come in three classes, which we choose to be also

eigenfunctions of ∂2,3. We have longitudinal harmonics Hi = ∇iYm2,m3

ℓ , ℓ ≥ 1 which are

in the ( ℓ
2 , ℓ

2 ) representation of SO(4) with (m2,m3) ranging as before. Then, there are

two types of transverse vector spherical harmonics: M+
i ≡ Y(ℓ,m2,m3);+

i with ℓ ≥ 1 in the
(

ℓ−1
2 , ℓ+1

2

)

and M−
i ≡ Y(ℓ,m2,m3);−

i with ℓ ≥ 1 in the
(

ℓ+1
2 , ℓ−1

2

)

. Their degeneracy is ℓ(ℓ+2)

and it is counted by |m2 ±m3| = ℓ∓ 1− 2k for M+
i and |m2 ±m3| = ℓ± 1− 2k for M−

i .

In particular, these harmonics satisfy

∇i∇iM±
j − Rk

jM±
k = −(ℓ + 1)2 M±

j

ǫijk∇jM±;k = ±
√

g̃ (ℓ + 1)M±
i

∇iM±
i = 0

∂2,3 M±
i = im2,3 M±

i (3.24)

where Rk
j = 2δk

j is the Ricci tensor on S3.

As a first application we consider the undeformed case. Setting γ̂i = 0, solutions

corresponding to a non-trivial dispersion relation (ω 6= 0) satisfy

(O0 − 1) χk = 0 O0 ρ +
2R(R2 − r2

0)

r0
∂tΦ = 0 O0 Φ − 2Rr0

(R2 − r2
0)

∂tρ = 0

O0 Aj −∇i∇jAi = 0 ∇iAi = 0 (3.25)

where now Φ ≡ ϕ. We see that the scalar and gauge fluctuations decouple. In particular,

the scalar equations give the usual [8]

ω
(0)
k =

(ℓ + 1)

R
ω

(0)
I =

(ℓ + 2)

R
ω

(0)
II =

ℓ

R
(3.26)

On the other hand, expanding Ai in vector spherical harmonics corresponds to turning

off the longitudinal modes Hi since ∇iAi = 0 from (3) and ℓ ≥ 1. We will find that

in the deformed case these longitudinal modes will play a crucial role in determining the

right bosonic spectrum of fluctuations. Non-vanishing undeformed solutions come from the

transverse vector spherical harmonic expansions (3.24) with frequencies

ω
(0)
± =

(ℓ + 1)

R
(3.27)

(see the next section and impose γ̂i ≡ 0 for more details). To conclude, we would like to

stress that the above results accomplish the study of [8] for undeformed giant gravitons,

taking into account the contributions of the worldvolume gauge fields 1. In particular, we

observe that the frequencies (3.27) coincide with the four ω
(0)
k in (3.26). However, with a

suitable shift in ℓ, the undeformed spectrum is completely degenerate and we will comment

on this interesting point in section 3.3. Now we proceed to investigate the main case γ̂i 6= 0.

1The gauge field analysis for giants in the undeformed PP-wave scenario has been performed in [10].
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3.1 Decoupled modes

The scalar modes χk are decoupled from the rest and equation (3.17) has been solved in [1]

expanding the perturbations as

χk(t, θ, φ2, φ3) = Xk e−iωkt Ym2,m3

ℓ (θ, φ2, φ3)

Their frequencies are given by

ω2
k =

1

R2

[

(ℓ + 1)2 + Γ̂2
]

(3.28)

where we have defined the positive quantity

Γ̂2 =

(

1 − r2
0

R2

)

(γ̂2m3 − γ̂3m2)
2 (3.29)

The fact that the four fluctuations in AdS5 are completely blind to the gauge fields is an

expected result since the giant graviton worldvolume, where the vector modes live, lies

inside the deformed five-sphere.

Being in a different representation, the harmonics M±
i do not mix with the others, so

we can make the ansatz

ρ = 0 Φ = 0 Ai(σ
a) = X± e−iω±t M±

i (θ, φ2, φ3) (3.30)

By using the identity ∇iAi = 0 as follows from (3.24), equations (3.19)–(3.21) are identi-

cally satisfied whereas equation (3.22) now reads

Oγ̂ Aj −∇i∇jAi = 0 (3.31)

Considering the explicit expression for the operator Oγ̂ in (3.16) and using the proper-

ties (3.24) we find a non-trivial solution when

ω2
± =

1

R2

[

(ℓ + 1)2 + Γ̂2
]

(3.32)

which is exactly the same value found in (3.28).

Note that the role of the deformation is to add the same positive quantity Γ̂2/R2 to

all undeformed frequencies.

3.2 Coupled vibrations

Finally, we consider the following coupled fluctuations

ρ(σa) = Xρ e−iωt Ym2,m3

ℓ (θ, φ2, φ3)

Φ(σa) = XΦ e−iωt Ym2,m3

ℓ (θ, φ2, φ3) (3.33)

Ai(σ
a) = XA e−iωt ∇iYm2,m3

ℓ (θ, φ2, φ3)
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with ℓ ≥ 1. Inserting these expansions in (3.19)–(3.22) and using the identities (3.23) for

the scalar harmonics, after a bit of algebra we obtain the matrix equation












R2ω2 − ℓ(ℓ + 2) − Γ̂2 −2iω
R(R2−r2

0
)

r0
0

2iω Rr0

(R2−r2

0
)

(

1 − Γ̂2

R2ω2

)

R2ω2 − ℓ(ℓ + 2) − Γ̂2 0
2r0

Rω
(γ̂2m3 − γ̂3m2) −i(R2 − r2

0)(γ̂2m3 − γ̂3m2) ℓ(ℓ + 2)

0 −i(R2 − r2
0)(γ̂2m3 − γ̂3m2) R2ω2 − Γ̂2



















Xρ

XΦ

XA






= 0

(3.34)

These are four equations for three unknowns Xρ, XΦ, XA and lead to non-trivial solutions

only if they are compatible, namely if the rank R(M) < 3, where M is the above matrix

of coefficients. This happens if

ω2
I =

1

R2

[

(ℓ + 2)2 + Γ̂2
]

ω2
II =

1

R2

(

ℓ2 + Γ̂2
)

(3.35)

and R(M) = 2. Again we find the same factor Γ̂2 modifying the undeformed frequencies.

Before closing this section we comment on the particular ℓ = m2 = m3 = 0 case. In (3.33)

this corresponds to switching off Ai since they turn out to be independent of the three-

sphere coordinates and of course we also have Γ̂2 = 0. The system (3.34) reduces to the

standard undeformed one and yields the frequencies ωI = 2/R and ωII = 0 2. We now

analyze in detail the degeneracies that characterize the spectrum of vibration modes around

the giant graviton.

3.3 Discussion

For a giant graviton expanded in the deformed sphere part of the geometry, we have

found four scalar fluctuations into AdS5 (with frequencies ω2
k) and two within S̃5 (ω2

I,II).

Furthermore, it has two bosonic vibrations coming from the pure vector expansion of the

worldvolume gauge fields (ω2
±). In particular, putting together (3.28) and (3.32), and

from (3.35) we get

ω2
k = ω2

± =
1

R2

[

(ℓ + 1)2 + Γ̂2
]

ω2
I =

1

R2

[

(ℓ + 2)2 + Γ̂2
]

ω2
II =

1

R2

(

ℓ2 + Γ̂2
)

(3.36)

The important result we would like to stress again is that the role of the gauge field

fluctuations is crucial in giving the right shape to the full bosonic spectrum. What happens

is that the whole set of undeformed frequencies obtained in [8] together with the new (3.27)

get modified by a universal positive shift in the present γ̂i 6= 0 case 3. In fact, we can rewrite

the frequency of a generic vibration X as

ω2
X(ℓ,m2,m3) =

1

R2

[

(

ω
(0)
X (ℓ)

)2
+ Γ̂2(m2,m3)

]

(3.37)

2Recall that as done in the undeformed case [8], we remove the zero modes ωII = 0 and also ωk = 1/R

in (3.28) from the spectrum since they correspond to the collective motion of the brane and change its

conserved quantum numbers. They can no longer be viewed to belong to the giant we started with.
3For any value of γ̂i there are no tachyonic modes, so confirming the stability of the configuration already

discussed in [1].
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Figure 1: The Zeeman-splitting of the undeformed 8(ℓ + 2)2 degrees of freedom for γ̂2 = γ̂3.

where ω
(0)
X (ℓ) is the undeformed frequency (see (3.26) and (3.27)), whereas Γ̂2(m2,m3)

defined in (3.29) is the universal splitting term that induces an explicit dependence on

the quantum numbers (m2,m3) with a pattern similar to the Zeeman effect for atomic

electrons. A similar behavior has been found in the meson mass splitting of [7] and the

following analysis is only intended to mimic those studies on the degeneracies characterizing

the spectrum.

So, we study the general case ℓ ≥ 0 in which this initial degeneracy occurs:

ω
(0)
k,±(ℓ + 1) = ω

(0)
I (ℓ) = ω

(0)
II (ℓ + 2) (3.38)

In particular, in the undeformed γ̂i = 0 case, this allows 8(ℓ+2)2 bosonic degrees of freedom

to have the same frequency. When we turn on the deformation, a complete degeneracy

exists among states that satisfy the above condition and are characterized by the same

value of Γ̂2(m2,m3). Therefore, having performed the ℓ-shift as in (3.38), we concentrate

on the degeneracy in Γ̂2(m2,m3) for fixed values of ℓ.

In the γ̂2 = γ̂3 ≡ γ̂ case, the deformation enters the spectrum only through the

difference (m2 − m3) so that the splitting term Γ̂2 depends only on a single integer j as

j ≡ |m2 − m3| = 0, 1, · · · , ℓ + 2 Γ̂2(j) =

(

1 − r2
0

R2

)

γ̂2 j2 (3.39)

For any value of ℓ ≥ 0 we observe a Zeeman-like splitting as shown in figure 1.

Precisely, the splitting occurs in the following way: There are 4(ℓ + 2) degrees of

freedom corresponding to j = 0 and j = ℓ + 2, and 8(ℓ + 2) for j = 1, · · · , ℓ + 1. The total

number of states sum up correctly to 8(ℓ + 2)2.

This scenario of course includes the supersymmetric LM-theory but recall that the

value of γ̂1 never enters the game so that the non-supersymmetric case γ̂2 = γ̂3 6= γ̂1 seems

to be a special at a bosonic level. It would be very interesting to see what role the fermionic

fluctuations play in this particular situation.

In the more general case γ̂2 6= γ̂3, the splitting term Γ̂2 now depends on both m2,3

and no longer on their difference. In order to make the comparison with the γ̂2 = γ̂3 case

easier, for fixed ℓ it is convenient to label Γ̂2 by the two numbers j and s

Γ̂2(j, s) =

(

1 − r2
0

R2

) [(

j

2
+ s

)

γ̂2 +

(

j

2
− s

)

γ̂3

]2

(3.40)

– 12 –



J
H
E
P
0
3
(
2
0
0
8
)
0
3
4

Figure 2: The Zeeman-splitting of the γ̂2 = γ̂3 = γ̂ degrees of freedom for γ̂2 6= γ̂3 and (ℓ + j)

even. We have x = 2 for j 6= ℓ + 2 and x = 1 for j = ℓ + 2. The value of Γ̂2 here appearing is

pictured considering the case γ̂3 < γ̂ < γ̂2.

where j is still defined as in (3.39), while s takes different values according to (ℓ+ j) being

even or odd. Its range reads

(ℓ + j) even

{

s = 0, · · · , ℓ+2
2 j = 0

s = − ℓ+2
2 , · · · , ℓ+2

2 j 6= 0
(3.41)

(ℓ + j) odd

{

s = 0, · · · , ℓ+1
2 j = 0

s = − ℓ+1
2 , · · · , ℓ+1

2 j 6= 0
(3.42)

By fixing j, the degenerate degrees of freedom of the γ̂2 = γ̂3 case further split

according to the different values of s. If (ℓ + j) is even and j = 0, the previous

4(ℓ + 2) degenerate levels split in (ℓ/2 + 2) new levels while for j 6= 0 the 4x(ℓ + 2)

levels open up in (ℓ+3) levels where x = 2 for j 6= ℓ+2 and x = 1 for j = ℓ+2 (see figure 2).

On the other hand, a more symmetric splitting occurs if (ℓ + j) is odd. In fact, for

j = 0 we find (ℓ+3)/2 different frequency levels and when j 6= 0 they are (ℓ+2) as depicted

in figure 3.

4. Dual giant gravitons

The analysis just performed signals the same γ̂i-behavior for all the fluctuations around a

giant expanded in the deformed part of the background. What about the dual giant case?

The answer follows from revising the fluctuations around the dual giant configuration found

in [1], now extended in order to understand the worldvolume gauge field contributions.

Recall that the stable D3-brane has constant radius (l0), orbits rigidly in the φ1 direction

on the deformed S̃5 and is wrapped in the three-sphere (α1, α2, α3) contained in the AdS5

– 13 –
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Figure 3: The Zeeman-splitting of the γ̂2 = γ̂3 degrees of freedom for γ̂2 6= γ̂3 and (ℓ + j) odd.

Once again γ̂3 < γ̂ < γ̂2.

part of the geometry

ds2
AdS5

= −(1 +
l2

R2
)dt2 +

dl2

1 + l2

R2

+ l2
[

dα2
1 + sin2 α1

(

dα2
2 + sin2 α2dα2

3

)]

(4.1)

now written in terms of global coordinates as in (2.8). Again, we study the role played by

the gauge field fluctuations on the worldvolume of the probe. We take F 6= 0,

l = l0 + ε λ(σa) φ1 = ω0t + εϕ1(σ
a) (4.2)

and

r = ε ρ(σa) θ =
π

4
+ ε ϑ(σa) φ2 = εϕ2(σ

a) φ3 = εϕ3(σ
a) (4.3)

with σa = (t, α1, α2, α3). We are simply perturbing the equilibrium dual giant configuration

reviewed in section 2, see (2.12), here recovered by setting ε = 0 in (4.2) and (4.3). Since

the calculation runs parallel to that of the previous section we are free to omit the details

and we only report the final form of the equations of motion. For the scalars we have

∂a

(

√

g̃ Gab ∂bλ
)

+
2R(R2 + l20)

l0

√

g̃ ∂tϕ1 = 0 (4.4)

∂a

(

√

g̃ Gab ∂bϕ1

)

− 2Rl0
(R2 + l20)

√

g̃ ∂tλ = 0 (4.5)

∂a

(

√

g̃ Gab ∂bρ
)

−
√

g̃
(

1 + Γ̃2
)

ρ = 0 (4.6)

while the equations of motion for the gauge fields, coming from their second order La-

grangian, take the simple form

L(2)
gauge = − T3

4R

√

g̃
(

GacGbdFabFcd

)

⇒ ∂a

(

√

g̃ GacGbd Fcd

)

= 0 (4.7)
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They are decoupled from the scalar modes and do not depend on the deformation param-

eters since the dual giant worldvolume lies in the undeformed part of the geometry. The

matrix G is the same as in (3.8) but now g̃ij is the diagonal metric on the unit three-sphere

(α1, α2, α3) with determinant g̃ = sin4 α1 sin2 α2. On the other hand, the positive quantity

Γ̃2 reads

Γ̃2 =

(

1 +
l20
R2

) (

γ̂2
2 + γ̂2

3

2

)

(4.8)

The first three equations (4.4)–(4.6) are exactly the same found in [1] and give

ω̃2
ρ =

1

R2

[

(ℓ + 1)2 + Γ̃2
]

ω̃2
I =

(ℓ + 2)2

R2
ω̃2

II =
ℓ2

R2
(4.9)

Rewriting the metric of the deformed five-sphere (2.1) using the complete set of coordinates

{φ1, yk}, with k = 1, · · · , 4, as done in [8], we can easily see that the radial frequency ω̃2
ρ

in (4.9) corresponds to the four ω̃2
k as4

ω̃2
ρ −→ ω̃2

k =
1

R2

[

(ℓ + 1)2 + Γ̃2
]

(4.10)

Equations (4.7) still come in two classes. With the gauge choice At = 0, we also have

∇iAi = 0 and a non-trivial solution exists for mode expansions involving the vector spher-

ical harmonics M±
i (3.24), exactly as in the undeformed giant graviton case discussed in

section 3. The resulting frequencies are

ω̃2
± =

(ℓ + 1)2

R2
(4.11)

which do not depend on the deformation parameters. Still, we can perform a suitable shift

in ℓ to study degeneracies. In the undeformed case we have Γ̃2 = 0 and

ω̃k,±(ℓ + 1) = ω̃I(ℓ) = ω̃II(ℓ + 2) (4.12)

so that the spectrum can be characterized by the same frequencies. On the other hand,

if γ̂i 6= 0 the degeneracy in ℓ is partially broken by the non-vanishing Γ̃2 which increases

the contributions of the four transverse fluctuations of the dual giant inside the deformed

S̃5, see (4.10). In particular, we have that the original 8(ℓ + 2)2 undeformed degenerate

degrees of freedom are now split into two sets. There are 4(ℓ + 2)2 with the same unde-

formed frequency ω ∼ (ℓ+ 2), while the remaining 4(ℓ + 2)2 encode the dependence on the

deformation parameters through the shift-quantity (4.8).

5. Conclusions

In this paper we have provided an extension of the results found in [1] for the fluctuations

around ground state configurations of (dual) giant gravitons in Lunin-Maldacena and Frolov

backgrounds. Since worldvolume gauge fluctuations are also computed, our knowledge of

4We have checked this explicitly. However it is possible to coherently consider ω̃ρ taking into account

that its degeneracy is equal to 4.
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their full bosonic spectrum is now complete. Both the N = 1 and non-supersymmetric

cases, depending on the choice of the deformation parameters γ̂i, have been analyzed.

When the giant lies in the deformed part of the geometry, we have found that a non-

trivial dependence on the γ̂2,3 parameters appears both in terms that correct the free

dynamics of the modes and in terms that couple the U(1) worldvolume gauge field to

the scalars in the orthogonal directions to the dynamical D3-brane. The γ̂1 parameter,

associated with a TsT transformation along the torus inside the D3 worldvolume, never

enters the equations of motion. The situation is closely related to the one found in [7] and

it could be an expected result. In fact, in both cases, the branes wrap the same deformed

sphere in the internal space, but we would like to stress that the giant graviton is dynamical

whereas the flavor D7 is a spacetime filling brane. The geometry of the configurations, but

not their dynamical properties, seems to rule the general γ̂i-behavior in the quadratic

fluctuations around these D-brane ground states.

A smooth limit to the undeformed equations of motion exists for γ̂i → 0. In this

limit all the modes decouple and we are back to the undeformed solutions of [8], now

extended with the gauge field contributions. This is a nice result, which easily follows

from our more involved analysis. In fact, the situation heavily changes once we consider

the general deformed equations with γ̂i 6= 0. Analytically solving these equations for

elementary excitations of scalars and vectors, we have found that the spectrum is slightly

modified with respect to the one found in [1]. The new deformed frequencies acquire a

non-trivial dependence on γ̂2,3 that is universal: The whole set of undeformed frequencies

gets shifted by the same quantity and the inclusion of gauge fluctuations in the game

is the nodal point. The universal term, being proportional to the U(1) × U(1) quantum

numbers (m2,m3), induces a level splitting in a Zeeman-like effect, which strongly resembles

the one observed in [7] along the study of the mesonic spectrum in flavored marginally

deformed AdS/CFT. We have performed a detailed analysis of the level splitting and of

the corresponding degeneracy. The situation turns out to be very different depending on

whether γ̂2 and γ̂3 are equal or not. For γ̂2 6= γ̂3 the degeneracy is almost completely broken,

while for γ̂2 = γ̂3 the frequency levels are characterized by a weak splitting effect. However,

as already observed in [1], the spectrum is deformed by a quantity whose strength depends

unavoidably on the radius of the giant: The larger the giant, the smaller the deformation

splitting.

By studying giant gravitons on a deformed (J, 0, 0) PP-wave, the authors of [11] also

found a classical configuration independent of the deformation and with a spectrum of

small fluctuations almost identical to the one obtained in [1]. Since they do not consider

possible couplings among scalar and vector modes, the universal γ̂-behavior we find could

also appear upon turning on the gauge fields on the worldvolume of the PP-wave giants

and change the precise value of their frequencies. It would be very interesting to check this

expectation.5

The scenario is totally different for dual giant gravitons. In section 4 we have also

introduced gauge field fluctuations on the worldvolume of a dynamical D3-brane lying in

5Another work dealing with giant gravitons on deformed PP-wave background is [12].
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AdS. Scalar and vector modes are decoupled since only the deformation parameters drive

their mixing and the worldvolume of the brane is now inside AdS5 which is not affected by

the deformation. Only the vibrations of the dual in the the deformed five-sphere directions

depend on γ̂2,3 together with the radius of the compact brane. The remaining scalar

fluctuations coincide with the undeformed ones; for the gauge fields the deformation is also

harmless. This provides the full analysis of the spectrum around dual giants even in the

standard undeformed AdS5 × S5 background, so enhancing the studies of [8].

Let us conclude by mentioning some directions in which our work could be extended.

First, it is very important to reproduce the spectrum of fluctuations about these giant

configurations and find their dual CFT operator counterparts. Furthermore, to fulfill the

deformed spectrum around (dual) giants and learn about its supersymmetry properties

one should also study the fermionic sector. In fact, restricting to the LM N = 1 case,

our giant gravitons should preserve supersymmetry since they saturate a BPS bound (see

the approach proposed in [13] and [14] where, in particular, the last analyzes in details the

supersymmetric dual giant case) and we expect to see supersymmetry in action in a suitable

reorganization of the bosonic/fermionic spectra. We leave these and other interesting open

problems for the future.

Acknowledgments

I would like to thank Alberto Mariotti, Sean McReynolds, Alberto Zaffaroni and especially

Silvia Penati for fruitful discussions and comments. This work has been supported in part

by INFN, PRIN prot. 2005 − 024045 − 004 and the European Commission RTN program

MRTN-CT-2004-005104.

References

[1] M. Pirrone, Giants on deformed backgrounds, JHEP 12 (2006) 064 [hep-th/0609173].

[2] O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry

and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086].

[3] S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069

[hep-th/0503201].

[4] J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from

anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075].

[5] M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and Goliath, JHEP 08 (2000) 040

[hep-th/0008015].

[6] A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual,

JHEP 08 (2000) 051 [hep-th/0008016].

[7] S. Penati, M. Pirrone and C. Ratti, Mesons in marginally deformed AdS/CFT,

arXiv:0710.4292.

[8] S.R. Das, A. Jevicki and S.D. Mathur, Vibration modes of giant gravitons, Phys. Rev. D 63

(2001) 024013 [hep-th/0009019].

– 17 –

http://jhep.sissa.it/stdsearch?paper=12%282006%29064
http://arxiv.org/abs/hep-th/0609173
http://jhep.sissa.it/stdsearch?paper=05%282005%29033
http://arxiv.org/abs/hep-th/0502086
http://jhep.sissa.it/stdsearch?paper=05%282005%29069
http://arxiv.org/abs/hep-th/0503201
http://jhep.sissa.it/stdsearch?paper=06%282000%29008
http://arxiv.org/abs/hep-th/0003075
http://jhep.sissa.it/stdsearch?paper=08%282000%29040
http://arxiv.org/abs/hep-th/0008015
http://jhep.sissa.it/stdsearch?paper=08%282000%29051
http://arxiv.org/abs/hep-th/0008016
http://arxiv.org/abs/0710.4292
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C024013
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C024013
http://arxiv.org/abs/hep-th/0009019


J
H
E
P
0
3
(
2
0
0
8
)
0
3
4

[9] M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT

with flavour, JHEP 07 (2003) 049 [hep-th/0304032].

[10] D. Sadri and M.M. Sheikh-Jabbari, Giant hedge-hogs: spikes on giant gravitons, Nucl. Phys.

B 687 (2004) 161 [hep-th/0312155].

[11] A. Hamilton and J. Murugan, Giant gravitons on deformed PP-waves, JHEP 06 (2007) 036

[hep-th/0609135].

[12] S.D. Avramis, K. Sfetsos and D. Zoakos, Complex marginal deformations of D3-brane

geometries, their Penrose limits and giant gravitons, Nucl. Phys. B 787 (2007) 55

[arXiv:0704.2067].

[13] A. Mariotti, Supersymmetric D-branes on SU(2) structure manifolds, JHEP 09 (2007) 123

[arXiv:0705.2563].

[14] A. Butti et al., On the geometry and the moduli space of beta-deformed quiver gauge theories,

arXiv:0712.1215.

– 18 –

http://jhep.sissa.it/stdsearch?paper=07%282003%29049
http://arxiv.org/abs/hep-th/0304032
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB687%2C161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB687%2C161
http://arxiv.org/abs/hep-th/0312155
http://jhep.sissa.it/stdsearch?paper=06%282007%29036
http://arxiv.org/abs/hep-th/0609135
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB787%2C55
http://arxiv.org/abs/0704.2067
http://jhep.sissa.it/stdsearch?paper=09%282007%29123
http://arxiv.org/abs/0705.2563
http://arxiv.org/abs/0712.1215

